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Allylation reactions are not only fundamental but also useful Table 1. Palladium-Catalyzed Methallylation of Aryl Halides 2 with
. . . . .. i - 1 a
transformations in organic synthesis. Among them, transition-metal- Homoallyl Alcohol 1a via Retro-Allylation

catalyzed cross-coupling allylation of aryl halides with allylmetal M . Arx cat. Pd(OAC),/P(p-tolyl)s, Cs,CO, A;\
r—
3

reagents ranks as one of the most attractive allylation reactions. ip,
In the case of palladium catalysis, allylmetal reagents such as
allylstannane and allylmagnesium reagents serve as the allyl sources
and effect transmetalation to yield allyl(aryl)palladium intermedi-

Pr 4a 2 toluene, reflux, 8 h

entry Ar-X 2 yield /%

ates. The intermediate occupies the last place in the catalytic cycle X 2a: X = Br 3a, 86 from 2a
of the cross-coupling allylation reaction, thereby being most 1 2b: X=Cl 3a, 6 from2b
responsible for the control of the stereo- and regioselectivity of 2¢: X = OTI 3a, 87 from 2¢
the allylation reaction when a substituted allyl group is to be
|ntrodgcgd. However, such stereo- and regioselective allylations are 2 QBr 2d 3b. 90
very difficult processe3.
Here we report a new protocol for allylation reaction of aryl
hahdes with homoallyl alcohol_s as the allyl sources. As outlined 3 FSCOBr 2 3¢, 64
in Scheme 1, our strategy relies on retro-allylation reaétiaf
intermediateB to provide ac-allyl(aryl)palladiumC. Given that EtO
the retro-allylation would proceed in a concerted fashion via a 4 )'_@’B' 2 3d, 83°
conformationally regulated six-membered cyclic transition state and ©
that the reductive elimination fror@ is faster than isomerization 5 >/-—®78r 2g 3e, 71°
of C to m-allyl(aryl)palladium, the stereo- and regiochemical 0
information of homoallyl alcohdl can be transferred to the allylated 6 H@_Br 2h 3f 57
product3.5 o ’
2i: X=Br 38, 29 from 2i
Scheme 1. Working Hypothesis 7 MeOOX 2j: X =1 3g, 59 from 2j
2k: X = OTf

3g, 61 from 2k

Ar—X Pd R’
r2 ] idati ) reducti Ar RS
I i .
) ;’Z,"difi‘o'xe ) :Izirr:Jiﬁ::tli%n RS~ RS @ A mixture of Pd(OAc) (0.025 mmol), R¢-tolyl)s (0.10 mmol), CsCOs
A . (0.72 mmol),1 (0.60 mmol), an@® (0.50 mmol) was boiled in toluene (3.0
R 3

r R7 mL) for 8 h.P A catalyst prepared from Pd(OAcf0.013 mmol) and R¢
Ar Pd R6 tolyl)s (0.050 mmol) was used.A catalyst prepared from Pd(OA)0.013
Pld A 5 0‘-a||y|(ary|)pa||adium| mmol) and PPk (0.050 mmol) was used.
X" Ri~ R5
! R4+ C triflates, no significant differences in rate and yield were observed
2) ligand Ar 0 tries 1 and 7
exchange " R? g (entries 1 and 7). . .
= O,Pd R R1I7 g2 Homoallyl alcohollb effected allylation oRato yield 1-allyl-
1 YL | - naphthalene3dh) in excellent yield (Scheme 2, Ny 1-naphthyl).
OH Ré R'7< 5 3) retro-allylation . . . o . .
Rl | R2_K R via six-membered As anticipated, high regioselectivity was observed in the reaction
R RS R°R transition state of 2a with homoallyl alcohollc to provide3i predominantly. In
R3R* 1 B the reaction ofld, the carbon-carbon bond formation also took

place at the less substituted carbon to provide liB&eselectively.

Treatment of 1-bromonaphthalerigef with homoallyl alcohol In contrast, homoallyl alcohole a butenyl isomer ofld, was
lain the presence of cesium carbonate under palladium catalysisconverted to branched coupling prod@tt The regiospecificity is
in refluxing toluene provided 1-methallylnaphthaleBe)(in good highly suggestive of the retro-allylation & followed by rapid
yield (Table 1, entry 1). Sterically demandifid as well as electron- reductive elimination (Scheme 1). It is worth noting that alcohol
deficient2e—2h underwent the methallylation reaction. The reaction 1f, the stereoisomer dfe, resisted the transformation.
of electron-richp-bromoanisole Zi) resulted in a lower yield of The reaction ofld afforded the linear coupling produ@k.
coupling producB8g. However, use op-iodoanisole 2j) provided However, 3k comprised a 1:1 mixture ofH)- and @)-isomers.
a satisfactory yield of 59%. Chloronaphthalene remained untouchedGratifyingly, the use of diastereomerically putg, havingtert-
under the reaction conditions (entry 1). In the reactions of aryl butyl and methyl groups at the oxygenated carbon, allowed
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Scheme 2. Allylation of 2a with Various Homoallyl Alcohols?
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Taking advantage of retro-allylation as a bond-cleavage strategy,
we have devised a new method for the preparatiorw-aflyl-
palladium, which is difficult to generate in a stereo- and regio-

2 The reaction conditions are the same as those in Table 1, except for selective manner. Coupled with immediate use of thallyl-

the reaction ofle (2 equiv of 1e and 2.4 equiv of G&£0O; were used).

Scheme 3. Regio- and Stereospecific Allylation with
Diastereomerically Pure Homoallyl Alcohols
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erythro-1i (E)-30

stereospecific synthesis dE)- and ¢)-3k (Scheme 3). Treatment
of 2awith threo-1¢f under the palladium catalysis afforde){3k
stereoselectively. On the other hand, formationf){3k was more
favored over that of §)-3k in the reaction oferythro-1g.® The
allylation controlled by the relative stereochemistry bfwas
applicable to stereospecific synthesis of vinyl etBiestarting from
diastereomerically purgh. Highly stereoselective synthesis of silyl
enolate3o also underscores the utility of the retro-allylation strategy.
We are tempted to rationalize the stereospecificity controlled by
starting homoallyl alcohols as follows (Scheme 4). Upon the retro-
allylation reaction othreo-1g, a chair transition statéa would be

the most stable, because of steric reasons, compared to other

possible transition states including another chair transition 4tate
and twist-boat transition states. Formation Bf-¢rotyl(naphthyl)-
palladium E)-5 is thus favored. The intermediate probably
undergoes reductive elimination so rapidly that its isomerization
into sr-allylpalladium and any other isomers is negligible.

palladium, the retro-allylation realizes stereo- and regiospecific
allylations of aryl halides. The retro-allylation system will be
applicable to other transformations catalyzed by other transition
metals.
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